TY - JOUR
T1 - Perturbative universal state-selective correction for state-specific multi-reference coupled cluster methods
AU - Brabec, Jiri
AU - Banik, Subrata
AU - Kowalski, Karol
AU - Pittner, Jiří
PY - 2016/10/28
Y1 - 2016/10/28
N2 - In this work, we report an extension of our previous development of the universal state-selective (USS) multireference coupled-cluster (MRCC) formalism. It was shown [Brabec et al., J. Chem. Phys. 136, 124102 (2012)] and [Banik et al., J. Chem. Phys. 142, 114106 (2015)] that the USS(2) approach significantly improves the accuracy of Brillouin-Wigner and Mukherjee MRCC formulations, however, the numerical and storage costs associated with calculating highly excited intermediates pose a significant challenge, which can restrict the applicability of the USS(2) method. Therefore, we introduce a perturbative variant of the USS(2) approach (USS(pt)), which substantially reduces numerical overhead of the full USS(2) correction while preserving its accuracy. Since the new USS(pt) implementation calculates the triple and quadruple projections in on-the-fly manner, the memory bottleneck associated with the need of storing expensive recursive intermediates is entirely eliminated. On the example of several benchmark systems, we demonstrate accuracies of USS(pt) and USS(2) approaches and their efficiency in describing quasidegenerate electronic states. It is also shown that the USS(pt) method significantly alleviates problems associated with the lack of invariance of MRCC theories upon the rotation of active orbitals.
AB - In this work, we report an extension of our previous development of the universal state-selective (USS) multireference coupled-cluster (MRCC) formalism. It was shown [Brabec et al., J. Chem. Phys. 136, 124102 (2012)] and [Banik et al., J. Chem. Phys. 142, 114106 (2015)] that the USS(2) approach significantly improves the accuracy of Brillouin-Wigner and Mukherjee MRCC formulations, however, the numerical and storage costs associated with calculating highly excited intermediates pose a significant challenge, which can restrict the applicability of the USS(2) method. Therefore, we introduce a perturbative variant of the USS(2) approach (USS(pt)), which substantially reduces numerical overhead of the full USS(2) correction while preserving its accuracy. Since the new USS(pt) implementation calculates the triple and quadruple projections in on-the-fly manner, the memory bottleneck associated with the need of storing expensive recursive intermediates is entirely eliminated. On the example of several benchmark systems, we demonstrate accuracies of USS(pt) and USS(2) approaches and their efficiency in describing quasidegenerate electronic states. It is also shown that the USS(pt) method significantly alleviates problems associated with the lack of invariance of MRCC theories upon the rotation of active orbitals.
UR - http://www.scopus.com/inward/record.url?scp=84993953620&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84993953620&partnerID=8YFLogxK
U2 - 10.1063/1.4965826
DO - 10.1063/1.4965826
M3 - Article
AN - SCOPUS:84993953620
SN - 0021-9606
VL - 145
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 16
M1 - 164106
ER -