TY - CHAP
T1 - Physicochemical characterization of microcrystalline cellulose extracted by sequential dual acid hydrolysis
AU - Kalita, Ranjan Dutta
AU - Chakraborty, Ishita
AU - Singh, Pinki
AU - Banik, Soumyabrata
AU - Mal, Sib Sankar
AU - Zhuo, Guan Yu
AU - Mazumder, Nirmal
N1 - Publisher Copyright:
© 2024 Elsevier Inc. All rights are reserved including those for text and data mining AI training and similar technologies.
PY - 2024/1/1
Y1 - 2024/1/1
N2 - Properties and applications of microcrystalline cellulose (MCC) differ based on its source and method of extraction. In this article, MCC was extracted from Saccharum spontaneum using single acid hydrolysis (MCC1) and sequential dual acid hydrolysis (MCC2). Scanning electron microscope (SEM) images exhibited that the dimension of MCC2 is much smaller compared to MCC1. X-ray diffraction (XRD) indicated that sequential dual acid hydrolysis results in decrease the crystallinity index (CI%) in case of MCC2 (34.45%). Fourier transform infrared spectroscopy (FTIR) spectra indicates the presence of characteristic bonds such as O–H stretching, C–H stretching, OH bending, and C–O–C stretching in both MCC1 and MCC2. Based on thermal analysis conducted using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), it was confirmed that MCC2 (275.0°C) melts at much lower temperature compared to MCC1 (342.04°C). MCC2 is also less thermally stable compared to MCC1 in terms of mass loss (%). In all, both MCC1 and MCC2 have different physicochemical properties based on the process of extraction and may have different applications. Based on their physicochemical characteristics, smaller MCC particles are known to be favored for wide variety of applications such as pharmaceutical excipients and impact factors such as tablet hardness, friability, and disintegration.
AB - Properties and applications of microcrystalline cellulose (MCC) differ based on its source and method of extraction. In this article, MCC was extracted from Saccharum spontaneum using single acid hydrolysis (MCC1) and sequential dual acid hydrolysis (MCC2). Scanning electron microscope (SEM) images exhibited that the dimension of MCC2 is much smaller compared to MCC1. X-ray diffraction (XRD) indicated that sequential dual acid hydrolysis results in decrease the crystallinity index (CI%) in case of MCC2 (34.45%). Fourier transform infrared spectroscopy (FTIR) spectra indicates the presence of characteristic bonds such as O–H stretching, C–H stretching, OH bending, and C–O–C stretching in both MCC1 and MCC2. Based on thermal analysis conducted using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), it was confirmed that MCC2 (275.0°C) melts at much lower temperature compared to MCC1 (342.04°C). MCC2 is also less thermally stable compared to MCC1 in terms of mass loss (%). In all, both MCC1 and MCC2 have different physicochemical properties based on the process of extraction and may have different applications. Based on their physicochemical characteristics, smaller MCC particles are known to be favored for wide variety of applications such as pharmaceutical excipients and impact factors such as tablet hardness, friability, and disintegration.
UR - https://www.scopus.com/pages/publications/85202814859
UR - https://www.scopus.com/inward/citedby.url?scp=85202814859&partnerID=8YFLogxK
U2 - 10.1016/B978-0-443-14042-6.00002-6
DO - 10.1016/B978-0-443-14042-6.00002-6
M3 - Chapter
AN - SCOPUS:85202814859
SN - 9780443140433
SP - 47
EP - 60
BT - Advanced Biophysical Techniques for Polysaccharides Characterization
PB - Elsevier
ER -