Abstract
This article presents a computational study based on the Eulerian-Eulerian model for computing the pressure drop and hydrodynamics of the gas-solid two-phase flow in a horizontal pipe. The solid particles considered in the analysis are the heavy minerals with a density of 7860 and 11,350 kg/m3. The flow situation corresponds to the upper limit of the dilute phase flow, where the inter-particle and the wall-particle collisions play a significant role. The numerical procedure agrees well with the experimental data and ensures good accuracy of the computed results. The analysis outcomes show that the gas-solid two-phase flow pressure drop increases with an increase in the inlet concentration and the density of the solid-phase. The radial distribution of the velocity and volume fraction profiles of both phases are asymmetric. The gas-phase possesses a relatively high velocity than the solid-phase. The gas-phase velocity reduces with an increase in the inlet concentration and the density of the solid-phase. The heavier particles have a slightly greater tendency to settle. With an increase in the inlet solid-phase volume fraction, the solid-phase concentration increases both at the top and the bottom portion of the pipe.
Original language | English |
---|---|
Pages (from-to) | 3091-3096 |
Number of pages | 6 |
Journal | Materials Today: Proceedings |
Volume | 44 |
DOIs | |
Publication status | Published - 2021 |
Event | 2021 International Conference on Materials and Technologies, Material TECH 2021 - Raipur, India Duration: 09-01-2021 → 10-01-2021 |
All Science Journal Classification (ASJC) codes
- General Materials Science