Prediction of fruit rot disease incidence in Arecanut based on weather parameters

K. Rajashree, K. V. Prema, G. Rajath, S. Angad

Research output: Contribution to journalArticlepeer-review

Abstract

The occurrence of pests and diseases in arecanut crops has always been an important factor affecting the total production of arecanut. Arecanut is always dependent on environmental factors during its growth. Thus monitoring and early prediction of the occurrence of the disease would be very helpful for prevention and therefore more crop production. Here, we propose artificial intelligence-based deep learning models for fruit rot disease prediction. Historical data on fruit rot incidence in representative areas of arecanut production in Udupi along with historical weather data are the parameters used to develop region-specific models for the Udupi district. The fruit rot disease incidence score value is predicted using recurrent neural network variants (i.e., Vanilla LSTM, Vanilla GRU, stacked LSTM, and Bidirectional LSTM) for the first time. The predictive performance of the proposed models is evaluated by mean square error (MSE) along with the 5-fold cross-validation technique. Further, compared to other deep learning and machine learning models, the Vanilla LSTM model gives 1.5 MSE, while the Vanilla GRU model gives 1.3 MSE making it the best prediction model for arecanut fruit rot disease.

Original languageEnglish
Pages (from-to)1117-1133
Number of pages17
JournalAgronomy Research
Volume20
Issue numberSpecial Issue I
DOIs
Publication statusPublished - 2022

All Science Journal Classification (ASJC) codes

  • Agronomy and Crop Science

Fingerprint

Dive into the research topics of 'Prediction of fruit rot disease incidence in Arecanut based on weather parameters'. Together they form a unique fingerprint.

Cite this