Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis

Ranjeet Kumar Mishra, Kaustubha Mohanty*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

687 Citations (Scopus)

Abstract

The present study reports pyrolysis behavior of three waste biomass using thermogravimetric analysis to determine kinetic parameters at five different heating rates. Physiochemical characterization confirmed that these biomass have the potential for fuel and energy production. Pyrolysis experiments were carried out at five different heating rates (5–25 °C min−1). Five model-free methods such as Kissinger-Akahira-Sunose (KAS), Ozawa-Flynn-Wall (OFW), Friedman, Coats-Redfern, and distributed activation energy (DAEM) were used to calculate the kinetic parameters. The activation energy was found to be 171.66 kJ mol−1, 148.44 kJ mol−1, and 171.24 kJ mol−1 from KAS model; 179.29 kJ mol−1, 156.58 kJ mol−1, and 179.47 kJ mol−1 from OFW model; 168.58 kJ mol−1, 181.53 kJ mol−1, and 184.61 kJ mol−1 from Friedman model; and 206.62 kJ mol−1, 171.63 kJ mol−1, and 160.45 kJ mol−1 from DAEM model for PW, SW, AN biomass respectively. The calculated kinetic parameters are in good agreement with other reported biomass.

Original languageEnglish
Pages (from-to)63-74
Number of pages12
JournalBioresource Technology
Volume251
DOIs
Publication statusPublished - 03-2018

All Science Journal Classification (ASJC) codes

  • Bioengineering
  • Environmental Engineering
  • Renewable Energy, Sustainability and the Environment
  • Waste Management and Disposal

Fingerprint

Dive into the research topics of 'Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis'. Together they form a unique fingerprint.

Cite this