Quinone scaffolds as potential therapeutic anticancer agents: Chemistry, mechanism of Actions, Structure-Activity relationships and future perspectives

Syed Faizan, Maged Mohammed Abdo Mohsen, Chinmya Amarakanth, Antony Justin, Rakesh Ravishankar Rahangdale, H. Raghu Chandrashekar, B. R. Prashantha Kumar

Research output: Contribution to journalReview articlepeer-review

1 Citation (Scopus)

Abstract

Quinone compounds have emerged as promising candidates for the development of anticancer drugs. Their unique chemical properties and their ability to participate in redox process make them attractive candidates for cancer therapy. Quinone compounds exhibit multiple mechanisms of action, and cause cytotoxicity and apoptosis in cancer cells by targeting multiple cellular components in biochemical pathways. This review provides an overview of the potentials of quinones as anti-inflammatory agents, focusing on their redox potentials and clinical applications in cancer treatment. This review begins with an introduction to quinones and their properties with emphasis on their redox activity. It explores redox cycle processes, including the conversion of quinones and semiquinones and the formation of reactive oxygen species (ROS). Reactive oxygen species (ROS) production via the quinone redox cycle plays an important role in the anti-inflammatory effects. In addition, this review examines the mechanism of action of quinones in cancer treatment. These mechanisms include induction of oxidative stress, DNA damage, inhibition of topoisomerases, modulation of signaling pathways, and proteasome inhibition. Each concept is discussed in detail to clarify the purpose and role of quinones in cancer cells. This review also highlights the importance of structure activity relationships in the development of effective quinone-based anticancer drugs. This review also provides insights into the issues related to development and future directions of quinones as cancer treatments. These include overcoming resistance, increasing the treatment efficiency, and exploring drug combinations. In conclusion, quinones are promising anticancer agents because of their ability to reverse activation and selective generation of ROS in cancer cells. Understanding their mechanisms of action is the need of the hour for exploring their therapeutic potentials.

Original languageEnglish
Article number101432
JournalResults in Chemistry
Volume7
DOIs
Publication statusPublished - 01-2024

All Science Journal Classification (ASJC) codes

  • General Chemistry

Fingerprint

Dive into the research topics of 'Quinone scaffolds as potential therapeutic anticancer agents: Chemistry, mechanism of Actions, Structure-Activity relationships and future perspectives'. Together they form a unique fingerprint.

Cite this