TY - JOUR
T1 - RP-hplc method development and validation of asiatic acid isolated from the plant centella asiatica
AU - Hebbar, Srinivas
AU - Dubey, Akhilesh
AU - Ravi, G. S.
AU - Kumar, Hemanth
AU - Saha, Santanu
N1 - Publisher Copyright:
© 2019 The Authors.
PY - 2019/5/1
Y1 - 2019/5/1
N2 - Objective: The present study was aimed to develop of the Guanfacine Hydrochloride Extended-release tablets for the treatment of Attention Deficit Hyperactivity Disorder (ADHD). The dosage regimen of Guanfacine Hydrochloride is 4 mg at every 6 h. The concentration of Guanfacine in plasma is fluctuating. Hence, to control the plasma fluctuation and to avoid toxicity problem, Guanfacine Hydrochloride was chosen as a drug with an aim to develop an extended release system for 20 to 24 h.Methods: The design of the system was based on the use of pH-dependent polymer (Hydroxypropyl Methyl Cellulose), pH-independent polymer (Eudragit L 100-55), along with microenvironment modifiers such as organic acid (Fumaric acid) were used in the formulation. Drug-excipient compatibility was studied by FTIR. Before compression, the granules were evaluated for precompression parameters such as bulk density, tapped density, an angle of repose, compressibility index and Hausner’s ratio. After compression, evaluation tests of tablets such as general appearance, hardness, thickness, weight variation, friability, content uniformity, in vitro release studies and stability studies were performed.Results: Out of 9 formulations, the drug release was found to be within the innovator formulation F9. The stability study of formulation F9 revealed there was no significant change in physical and chemical properties of drug stored at 40 °C/75 % RH, 30 °C/65 % RH, 25 °C/60 % RH for 2 mo. Conclusion: Optimized formulation batch F9 showed highest F2 value which indicates similarity with innovator product. The study indicates that Guanfacine Hydrochloride Extended-release tablet was successfully developed.
AB - Objective: The present study was aimed to develop of the Guanfacine Hydrochloride Extended-release tablets for the treatment of Attention Deficit Hyperactivity Disorder (ADHD). The dosage regimen of Guanfacine Hydrochloride is 4 mg at every 6 h. The concentration of Guanfacine in plasma is fluctuating. Hence, to control the plasma fluctuation and to avoid toxicity problem, Guanfacine Hydrochloride was chosen as a drug with an aim to develop an extended release system for 20 to 24 h.Methods: The design of the system was based on the use of pH-dependent polymer (Hydroxypropyl Methyl Cellulose), pH-independent polymer (Eudragit L 100-55), along with microenvironment modifiers such as organic acid (Fumaric acid) were used in the formulation. Drug-excipient compatibility was studied by FTIR. Before compression, the granules were evaluated for precompression parameters such as bulk density, tapped density, an angle of repose, compressibility index and Hausner’s ratio. After compression, evaluation tests of tablets such as general appearance, hardness, thickness, weight variation, friability, content uniformity, in vitro release studies and stability studies were performed.Results: Out of 9 formulations, the drug release was found to be within the innovator formulation F9. The stability study of formulation F9 revealed there was no significant change in physical and chemical properties of drug stored at 40 °C/75 % RH, 30 °C/65 % RH, 25 °C/60 % RH for 2 mo. Conclusion: Optimized formulation batch F9 showed highest F2 value which indicates similarity with innovator product. The study indicates that Guanfacine Hydrochloride Extended-release tablet was successfully developed.
UR - http://www.scopus.com/inward/record.url?scp=85066922823&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85066922823&partnerID=8YFLogxK
U2 - 10.22159/ijap.2019v11i3.31525
DO - 10.22159/ijap.2019v11i3.31525
M3 - Article
AN - SCOPUS:85066922823
SN - 0975-7058
VL - 11
SP - 72
EP - 78
JO - International Journal of Applied Pharmaceutics
JF - International Journal of Applied Pharmaceutics
IS - 3
ER -