Sarcasm Detection over Social Media Platforms Using Hybrid Ensemble Model with Fuzzy Logic

Dilip Kumar Sharma, Bhuvanesh Singh, Saurabh Agarwal, Nikhil Pachauri, Amel Ali Alhussan, Hanaa A. Abdallah

Research output: Contribution to journalArticlepeer-review


A figurative language expression known as sarcasm implies the complete contrast of what is being stated with what is meant, with the latter usually being rather or extremely offensive, meant to offend or humiliate someone. In routine conversations on social media websites, sarcasm is frequently utilized. Sentiment analysis procedures are prone to errors because sarcasm can change a statement’s meaning. Analytic accuracy apprehension has increased as automatic social networking analysis tools have grown. According to preliminary studies, the accuracy of computerized sentiment analysis has been dramatically decreased by sarcastic remarks alone. Sarcastic expressions also affect automatic false news identification and cause false positives. Because sarcastic comments are inherently ambiguous, identifying sarcasm may be difficult. Different individual NLP strategies have been proposed in the past. However, each methodology has text contexts and vicinity restrictions. The methods are unable to manage various kinds of content. This study suggests a unique ensemble approach based on text embedding that includes fuzzy evolutionary logic at the top layer. This approach involves applying fuzzy logic to ensemble embeddings from the Word2Vec, GloVe, and BERT models before making the final classification. The three models’ weights assigned to the probability are used to categorize objects using the fuzzy layer. The suggested model was validated on the following social media datasets: the Headlines dataset, the “Self-Annotated Reddit Corpus” (SARC), and the Twitter app dataset. Accuracies of 90.81%, 85.38%, and 86.80%, respectively, were achieved. The accuracy metrics were more accurate than those of earlier state-of-the-art models.

Original languageEnglish
Article number937
JournalElectronics (Switzerland)
Issue number4
Publication statusPublished - 02-2023

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Signal Processing
  • Hardware and Architecture
  • Computer Networks and Communications
  • Electrical and Electronic Engineering


Dive into the research topics of 'Sarcasm Detection over Social Media Platforms Using Hybrid Ensemble Model with Fuzzy Logic'. Together they form a unique fingerprint.

Cite this