TY - JOUR
T1 - Segmentation and classification of white blood cancer cells from bone marrow microscopic images using duplet-convolutional neural network design
AU - Devi, Tulasi Gayatri
AU - Patil, Nagamma
AU - Rai, Sharada
AU - Sarah, Cheryl Philipose
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2023
Y1 - 2023
N2 - Cancer is a disease linked to the untamed and rapid division of cells in the body. Cancer detection through conventional methods like complete blood count is a tedious and time-consuming task prone to human errors. The introduction of image processing techniques and computer-aided diagnostics is beneficial to this field as the results obtained by utilizing these methods are quick and accurate. The proposed method in this paper uses a design Convolutional Leaky RELU with CatBoost and XGBoost (CLR-CXG) to segment the images and extract the important features that help in classification. The binary classification algorithm and gradient boosting algorithm CatBoost (Categorical Boost) and XGBoost (Extreme Gradient Boost) are implemented individually. Moreover, Convolutional Leaky RELU with CatBoost (CLRC) is designed to decrease bias and provide high accuracy, while Convolutional Leaky RELU with XGBoost (CLRXG) is designed for classification or regression prediction problems which will increase the speed of executing the algorithm and improve its performance. Thus the CLR-CXG classifies the test images into Acute Lymphoblastic Leukemia (ALL) or Multiple Myeloma (MM). Finally, the CLRC algorithm achieved 100% accuracy in classifying cancer cells, and the recorded run time is 10s. Moreover, the CLRXG algorithm has gained an accuracy of 97.12% for classifying cancer cells and 12 s for executing the process.
AB - Cancer is a disease linked to the untamed and rapid division of cells in the body. Cancer detection through conventional methods like complete blood count is a tedious and time-consuming task prone to human errors. The introduction of image processing techniques and computer-aided diagnostics is beneficial to this field as the results obtained by utilizing these methods are quick and accurate. The proposed method in this paper uses a design Convolutional Leaky RELU with CatBoost and XGBoost (CLR-CXG) to segment the images and extract the important features that help in classification. The binary classification algorithm and gradient boosting algorithm CatBoost (Categorical Boost) and XGBoost (Extreme Gradient Boost) are implemented individually. Moreover, Convolutional Leaky RELU with CatBoost (CLRC) is designed to decrease bias and provide high accuracy, while Convolutional Leaky RELU with XGBoost (CLRXG) is designed for classification or regression prediction problems which will increase the speed of executing the algorithm and improve its performance. Thus the CLR-CXG classifies the test images into Acute Lymphoblastic Leukemia (ALL) or Multiple Myeloma (MM). Finally, the CLRC algorithm achieved 100% accuracy in classifying cancer cells, and the recorded run time is 10s. Moreover, the CLRXG algorithm has gained an accuracy of 97.12% for classifying cancer cells and 12 s for executing the process.
UR - https://www.scopus.com/pages/publications/85149908026
UR - https://www.scopus.com/inward/citedby.url?scp=85149908026&partnerID=8YFLogxK
U2 - 10.1007/s11042-023-14899-9
DO - 10.1007/s11042-023-14899-9
M3 - Article
AN - SCOPUS:85149908026
SN - 1380-7501
VL - 82
SP - 35277
EP - 35299
JO - Multimedia Tools and Applications
JF - Multimedia Tools and Applications
IS - 23
ER -