TY - JOUR
T1 - Selenium attenuates venlafaxine hydrochloride-induced testicular damage in mice via modulating oxidative stress and apoptosis
AU - Kaur, Sarvnarinder
AU - Kaur, Amarjit
AU - Jaswal, Nisha
AU - Aniqa, Aniqa
AU - Sadwal, Shilpa
AU - Bharati, Sanjay
N1 - Publisher Copyright:
© 2021 Wiley-VCH GmbH
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/7
Y1 - 2021/7
N2 - The present study assessed the effect of selenium (Se) supplementation on Venlafaxine hydrochloride (VH)-induced testicular toxicity. Mice were segregated into Group I (C), Group II (0.5 ppm Se), Group III (VH at a dose 60 mg/kg b.w.) and Group IV (Se was given as per Group II, and VH was given as per Group III). After 10 weeks, sperm parameters, histology, sperm cell counts, antioxidants activities, apoptotic proteins and molecular analysis of testicular tissue were evaluated. Group III had significantly lower sperm concentration (from 2.17 ± 0.28 to 1.04 ± 0.22) and sperm motility (from 68.04 ± 5.5 to 21.47 ± 5.21), and showed an extensive vacuolisation in the germinal epithelium, abnormal basement membrane, and reduced germ cell number as compared to Group I. However, selenium supplementation in Group IV substantially increased sperm concentration (1.47 ± 0.48) and motility (33.27 ± 8.66), improved the histoarchitecture and repopulated the germ cells as observed by raised numbers of spermatogonia, spermatocytes, round spermatids and elongated spermatids contrasted to Group III. Group IV also showed a noteworthy decreased ROS, LPO levels, as well as expressions of Bax, caspase-9, and caspase-3 and increased the SOD, CAT, GPx, and GSH activities as well the expression of Bcl-2 as compared to Group III. This effect was further supported by FTIR analysis for nucleic acids. Thus, selenium supplementation showed significant protection against VH-induced testicular toxicity.
AB - The present study assessed the effect of selenium (Se) supplementation on Venlafaxine hydrochloride (VH)-induced testicular toxicity. Mice were segregated into Group I (C), Group II (0.5 ppm Se), Group III (VH at a dose 60 mg/kg b.w.) and Group IV (Se was given as per Group II, and VH was given as per Group III). After 10 weeks, sperm parameters, histology, sperm cell counts, antioxidants activities, apoptotic proteins and molecular analysis of testicular tissue were evaluated. Group III had significantly lower sperm concentration (from 2.17 ± 0.28 to 1.04 ± 0.22) and sperm motility (from 68.04 ± 5.5 to 21.47 ± 5.21), and showed an extensive vacuolisation in the germinal epithelium, abnormal basement membrane, and reduced germ cell number as compared to Group I. However, selenium supplementation in Group IV substantially increased sperm concentration (1.47 ± 0.48) and motility (33.27 ± 8.66), improved the histoarchitecture and repopulated the germ cells as observed by raised numbers of spermatogonia, spermatocytes, round spermatids and elongated spermatids contrasted to Group III. Group IV also showed a noteworthy decreased ROS, LPO levels, as well as expressions of Bax, caspase-9, and caspase-3 and increased the SOD, CAT, GPx, and GSH activities as well the expression of Bcl-2 as compared to Group III. This effect was further supported by FTIR analysis for nucleic acids. Thus, selenium supplementation showed significant protection against VH-induced testicular toxicity.
UR - http://www.scopus.com/inward/record.url?scp=85102556040&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85102556040&partnerID=8YFLogxK
U2 - 10.1111/and.14050
DO - 10.1111/and.14050
M3 - Article
AN - SCOPUS:85102556040
SN - 0303-4569
JO - Andrologia
JF - Andrologia
ER -