TY - JOUR
T1 - Short-term desalination of Pulicat lagoon (Southeast India) due to the 2015 extreme flood event
T2 - insights from Land-Ocean Interactions in Coastal Zone (LOICZ) models
AU - Santhanam, Harini
AU - Natarajan, Thulasiraman
N1 - Funding Information:
Harini Santhanam (HS) acknowledges the DST Woman Scientist project (2015–18) for field work. The authors thank Professor Dennis Swaney for his help towards improving the language. The authors acknowledge BHUVAN, ISRO for CARTOSAT DEM data, NASA for the GPM precipitation data and open source tools GRASS, QGIS, R and INKSCAPE.
Publisher Copyright:
© 2018, The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - Introduction: We investigated the magnitude and duration of desalination of Pulicat—a coastal lagoon ecosystem connected to the Bay of Bengal on the South-eastern coast of India—during the 2015 South India flood event which was a period of high-magnitude precipitation and riverine flooding. Methods: We estimated freshwater runoff into the lagoon using flow accumulation models for a period of 55 days (November 1 to December 25, 2015) using daily gridded precipitation data from the Global Precipitation Measurement and a digital elevation model. Using the estimates of freshwater runoff, direct precipitation and observed salinities, we simulated water and salinity fluxes of the lagoon using the Land-Ocean Interactions in the Coastal Zone model. Further, we also used Monte Carlo simulation to estimate the uncertainty in system salinity, the residual salinity at the boundary and the freshwater residence times in the lagoon. Results: We estimated that a high volume (~ 760 × 106 m3) of relatively low salinity waters (residual salinity = 23.47 psu) had been exported from the lagoon to the Bay of Bengal during the period which is likely to have caused a strong dip in the daily salinity profile of the coastal sea. We contend that the lagoon experienced ~ 40% desalination due to the 2015 event with a freshwater residence time of 18.5 days. Conclusions: The study highlighted the short-term, high-magnitude desalination undergone by Pulicat lagoon during the 2015 South India floods. Considering the high residual and exchange volumes obtained from the study, we conclude that Pulicat could be a major exporter of relatively low salinity waters to the Bay of Bengal during monsoons.
AB - Introduction: We investigated the magnitude and duration of desalination of Pulicat—a coastal lagoon ecosystem connected to the Bay of Bengal on the South-eastern coast of India—during the 2015 South India flood event which was a period of high-magnitude precipitation and riverine flooding. Methods: We estimated freshwater runoff into the lagoon using flow accumulation models for a period of 55 days (November 1 to December 25, 2015) using daily gridded precipitation data from the Global Precipitation Measurement and a digital elevation model. Using the estimates of freshwater runoff, direct precipitation and observed salinities, we simulated water and salinity fluxes of the lagoon using the Land-Ocean Interactions in the Coastal Zone model. Further, we also used Monte Carlo simulation to estimate the uncertainty in system salinity, the residual salinity at the boundary and the freshwater residence times in the lagoon. Results: We estimated that a high volume (~ 760 × 106 m3) of relatively low salinity waters (residual salinity = 23.47 psu) had been exported from the lagoon to the Bay of Bengal during the period which is likely to have caused a strong dip in the daily salinity profile of the coastal sea. We contend that the lagoon experienced ~ 40% desalination due to the 2015 event with a freshwater residence time of 18.5 days. Conclusions: The study highlighted the short-term, high-magnitude desalination undergone by Pulicat lagoon during the 2015 South India floods. Considering the high residual and exchange volumes obtained from the study, we conclude that Pulicat could be a major exporter of relatively low salinity waters to the Bay of Bengal during monsoons.
UR - http://www.scopus.com/inward/record.url?scp=85044226126&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85044226126&partnerID=8YFLogxK
U2 - 10.1186/s13717-018-0119-7
DO - 10.1186/s13717-018-0119-7
M3 - Article
AN - SCOPUS:85044226126
SN - 2192-1709
VL - 7
JO - Ecological Processes
JF - Ecological Processes
IS - 1
M1 - 10
ER -