TY - JOUR
T1 - Soft computing for sustainable drilling of AISI 316L stainless steel under formulated neem oil minimum quantity lubrication condition
AU - Natesh, C. P.
AU - Shashidhara, Y. M.
AU - Amarendra, H. J.
AU - Shetty, Raviraj
AU - Nayak, Rajesh
AU - Shetty, S. V.Uday Kumar
AU - Nayak, Madhukara
AU - Hegde, Adithya
N1 - Publisher Copyright:
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2023
Y1 - 2023
N2 - This paper discusses about process input optimization to obtain desired output characteristics such as Surface Roughness (microns), Thrust Force (N) and Torque (N-m) during drilling of AISI 316 L Stainless Steel under minimum quantity formulated neem oil lubrication condition based on Taguchi Design of Experiments (TDOE), Response Surface Methodology (RSM) and Desirability Functional Analysis (DFA) by varying flow rate (ml.min−1), stand-off distance (mm), flow pressure (Bar) and nozzle exit diameter (mm). Formulated Neem Oil possesses natural lubricating properties that reduce friction and heat generation, thus prolonging the tool life and improving surface finish. Additionally, it is biodegradable and environmentally friendly, making it a sustainable choice for machining operations. From the experimental investigation using TDOE, it was observed that there was considerable improvement in thrust force, surface roughness and torque with modified neem oil as a lubricant. Further, plot for main effects and Analysis of Variance (ANOVA) are successfully used to identify the optimum process input parameters and their percentage of contribution (P%) on output parameters. RSM is successfully used to generate a second order mathematical model which can be effectively used to analyze the process parameters. Further, from Desirability Functional Analysis (DFA), minimum surface roughness (0.34 microns), thrust force (1292.37 N) and torque (14.71 N-m) value were predicted. Finally, Back Propagation Artificial Neural Network (BPANN) analysis has been adopted to predict the surface roughness, thrust force and torque with a minimal error of 1.46%, 0.017% & 0.17%, respectively. The adoption of Neem oil formulations has been successful in improving machining characteristics. Its versatility across an array of machining processes and materials, in tandem with the global momentum toward greener manufacturing paradigms, positions it as a promising lubricant for various machining practices.
AB - This paper discusses about process input optimization to obtain desired output characteristics such as Surface Roughness (microns), Thrust Force (N) and Torque (N-m) during drilling of AISI 316 L Stainless Steel under minimum quantity formulated neem oil lubrication condition based on Taguchi Design of Experiments (TDOE), Response Surface Methodology (RSM) and Desirability Functional Analysis (DFA) by varying flow rate (ml.min−1), stand-off distance (mm), flow pressure (Bar) and nozzle exit diameter (mm). Formulated Neem Oil possesses natural lubricating properties that reduce friction and heat generation, thus prolonging the tool life and improving surface finish. Additionally, it is biodegradable and environmentally friendly, making it a sustainable choice for machining operations. From the experimental investigation using TDOE, it was observed that there was considerable improvement in thrust force, surface roughness and torque with modified neem oil as a lubricant. Further, plot for main effects and Analysis of Variance (ANOVA) are successfully used to identify the optimum process input parameters and their percentage of contribution (P%) on output parameters. RSM is successfully used to generate a second order mathematical model which can be effectively used to analyze the process parameters. Further, from Desirability Functional Analysis (DFA), minimum surface roughness (0.34 microns), thrust force (1292.37 N) and torque (14.71 N-m) value were predicted. Finally, Back Propagation Artificial Neural Network (BPANN) analysis has been adopted to predict the surface roughness, thrust force and torque with a minimal error of 1.46%, 0.017% & 0.17%, respectively. The adoption of Neem oil formulations has been successful in improving machining characteristics. Its versatility across an array of machining processes and materials, in tandem with the global momentum toward greener manufacturing paradigms, positions it as a promising lubricant for various machining practices.
UR - http://www.scopus.com/inward/record.url?scp=85172939771&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85172939771&partnerID=8YFLogxK
U2 - 10.1080/23311916.2023.2261231
DO - 10.1080/23311916.2023.2261231
M3 - Article
AN - SCOPUS:85172939771
SN - 2331-1916
VL - 10
JO - Cogent Engineering
JF - Cogent Engineering
IS - 2
M1 - 2261231
ER -