Spectroscopic and electrical analysis of p–Si/n-ZnSxSe1−x (0.0 ≤ x ≤ 1.0) heterostructures for photodetector applications

Sahana Nagappa Moger, M. G. Mahesha*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The present paper focuses on the properties of the p–Si/ ZnSxSe1−x (0 ≤ x ≤ 1) heterojunctions in photodetector applications. The heterostructures were fabricated by depositing ZnSSe on Si wafer using the thermal co-evaporation technique with ZnS and ZnSe powders. The GIXRD study showed that films were in cubic phase, and the prominent peak was shifted with composition x. The maximum crystallite size of the films was found for x = 0.8. The presence of point defects and emission related to higher Zn content in the thin films was confirmed by Photoluminescence. Temperature-dependent Raman analysis reveals that the longitudinal optical phonon modes shift to the lower wavenumber side as temperature decreases, which describes the variation of lattice parameters with temperature. The barrier height and ideality factor were calculated by implementing the thermionic emission. The photoresponse of p–Si/ ZnSxSe1−x heterostructures was studied. The investigation showed that the sample with x = 0.8 exhibits high photosensitivity and is suitable for photodetector applications.

Original languageEnglish
Article number958
JournalJournal of Materials Science: Materials in Electronics
Volume34
Issue number11
DOIs
Publication statusPublished - 04-2023

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Spectroscopic and electrical analysis of p–Si/n-ZnSxSe1−x (0.0 ≤ x ≤ 1.0) heterostructures for photodetector applications'. Together they form a unique fingerprint.

Cite this