Structure-activity relationship mediated molecular insights of DprE1 inhibitors: A Comprehensive Review

Swagatika Dash, Ekta Rathi, Avinash Kumar, Kiran Chawla, Alex Joseph, Suvarna G. Kini*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

4 Citations (Scopus)

Abstract

Emerging threats of multi-drug resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) tuberculosis led to the discovery of a novel target which was entitled Decaprenylphosphoryl-β-D-ribose 2’-epimerase (DprE1) enzyme. DprE1 is composed of two isoforms, decaprenylphosphoryl-β-D-ribose oxidase (DprE1) and decaprenylphosphoryl-D-2-keto erythro pentose reductase (DprE2). The enzymes, DprE1 and DprE2, regulate the two-step epimerization process to form DPA (Decaprenylphosphoryl arabinose) from DPX (Decaprenylphosphoryl-D-ribose), which is the sole precursor in the cell wall synthesis of arabinogalactan (AG) and lipoarabinomannan (LAM). Target-based and whole-cell-based screening played an imperative role in the identification of the druggable target, DprE1, whereas the druggability of the DprE2 enzyme is not proved yet. To date, diverse scaffolds of heterocyclic and aromatic ring systems have been reported as DprE1 inhibitors based on their interaction mode, i.e. covalent, and non-covalent inhibitors. This review describes the structure-activity relationship (SAR) of reported covalent and non-covalent inhibitors to enlighten about the crucial pharmacophoric features required for DprE1 inhibition, along with in-silico studies which characterize the amino acid residues responsible for covalent and non-covalent interactions. Communicated by Ramaswamy H. Sarma.

Original languageEnglish
JournalJournal of Biomolecular Structure and Dynamics
DOIs
Publication statusAccepted/In press - 2023

All Science Journal Classification (ASJC) codes

  • Structural Biology
  • Molecular Biology

Fingerprint

Dive into the research topics of 'Structure-activity relationship mediated molecular insights of DprE1 inhibitors: A Comprehensive Review'. Together they form a unique fingerprint.

Cite this