Study of distance metrics on k - Nearest neighbor algorithm for star categorization

Swathi Nayak, Manisha Bhat, N. V.Subba Reddy, B. Ashwath Rao

Research output: Contribution to journalConference articlepeer-review

2 Citations (Scopus)


Classification of stars is essential to investigate the characteristics and behavior of stars. Performing classifications manually is error-prone and time-consuming. Machine learning provides a computerized solution to handle huge volumes of data with minimal human input. k-Nearest Neighbor (kNN) is one of the simplest supervised learning approaches in machine learning. This paper aims at studying and analyzing the performance of the kNN algorithm on the star dataset. In this paper, we have analyzed the accuracy of the kNN algorithm by considering various distance metrics and the range of k values. Minkowski, Euclidean, Manhattan, Chebyshev, Cosine, Jaccard, and Hamming distance were applied on kNN classifiers for different k values. It is observed that Cosine distance works better than the other distance metrics on star categorization.

Original languageEnglish
Article number012004
JournalJournal of Physics: Conference Series
Issue number1
Publication statusPublished - 11-01-2022
Event1st International Conference on Artificial Intelligence, Computational Electronics and Communication System, AICECS 2021 - Manipal, Virtual, India
Duration: 28-10-202130-10-2021

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)


Dive into the research topics of 'Study of distance metrics on k - Nearest neighbor algorithm for star categorization'. Together they form a unique fingerprint.

Cite this