TY - JOUR
T1 - Subpolygroup commutativity degree of finite extension polygroup
AU - Al-Tahan, M.
AU - Davvaz, B.
AU - Harikrishnan, P.
AU - Pallavi, P.
N1 - Publisher Copyright:
© 2023 World Scientific Publishing Company.
PY - 2023
Y1 - 2023
N2 - In this paper, we consider finite extension polygroups as a special class of polygroups to study probabilistic polygroup theory. In this regard, we study the subpolygroup lattice of the extension polygroups. By using the results of the subpolygroup lattice, we obtain an explicit formula for the subpolygroup commutativity degree of the extension polygroup.
AB - In this paper, we consider finite extension polygroups as a special class of polygroups to study probabilistic polygroup theory. In this regard, we study the subpolygroup lattice of the extension polygroups. By using the results of the subpolygroup lattice, we obtain an explicit formula for the subpolygroup commutativity degree of the extension polygroup.
UR - http://www.scopus.com/inward/record.url?scp=85183554100&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85183554100&partnerID=8YFLogxK
U2 - 10.1142/S0218196723500698
DO - 10.1142/S0218196723500698
M3 - Article
AN - SCOPUS:85183554100
SN - 0218-1967
VL - 34
SP - 55
EP - 68
JO - International Journal of Algebra and Computation
JF - International Journal of Algebra and Computation
IS - 1
ER -