TY - JOUR
T1 - Synthesis and Characterization of Reduced Graphene Oxide for Supercapacitor Application with a Biodegradable Electrolyte
AU - Adarsh Rag, S.
AU - Selvakumar, M.
AU - Bhat, Somashekara
AU - Chidangil, Santhosh
AU - De, Shounak
PY - 2020/2/1
Y1 - 2020/2/1
N2 - The possibility of synthesizing a proton-conducting biopolymer electrolyte of polyvinyl alcohol (PVA) doped with 1-ethyl-3-methylimidazolium ethyl sulphate ([EMIM][EtSO4]) ionic liquid and ammonium acetate (CH3COONH4) by solvent casting has been investigated. The ionic conductivity of electrolyte membrane increased with addition of IL and fairly good ionic conductivity of 6.56 × 10−4 S cm−1 has been attained. The conductivity studies of the biopolymer electrolyte membrane have been carried out in coplanar configuration. Graphene oxide (GO) and reduced graphene oxide (rGO) have been synthesized by a chemical method. The prepared rGO has been characterized using ultraviolet–visible (UV–Vis) absorption spectroscopy, x-ray diffraction, Raman and x-ray photoelectron spectroscopy analysis. The surface area of rGO has been increased from 2.69 m2 g−1 to 203.78 m2 g−1. In this work, a supercapacitor with a symmetric electrode has been fabricated using PVA-doped ionic liquid as a biopolymer electrolyte and rGO as electrode materials. Its electrochemical performance has been verified, and the device exhibited a good specific capacitance of 138 F g−1. This combination was found to be very useful to improve the capacitance of supercapacitor.
AB - The possibility of synthesizing a proton-conducting biopolymer electrolyte of polyvinyl alcohol (PVA) doped with 1-ethyl-3-methylimidazolium ethyl sulphate ([EMIM][EtSO4]) ionic liquid and ammonium acetate (CH3COONH4) by solvent casting has been investigated. The ionic conductivity of electrolyte membrane increased with addition of IL and fairly good ionic conductivity of 6.56 × 10−4 S cm−1 has been attained. The conductivity studies of the biopolymer electrolyte membrane have been carried out in coplanar configuration. Graphene oxide (GO) and reduced graphene oxide (rGO) have been synthesized by a chemical method. The prepared rGO has been characterized using ultraviolet–visible (UV–Vis) absorption spectroscopy, x-ray diffraction, Raman and x-ray photoelectron spectroscopy analysis. The surface area of rGO has been increased from 2.69 m2 g−1 to 203.78 m2 g−1. In this work, a supercapacitor with a symmetric electrode has been fabricated using PVA-doped ionic liquid as a biopolymer electrolyte and rGO as electrode materials. Its electrochemical performance has been verified, and the device exhibited a good specific capacitance of 138 F g−1. This combination was found to be very useful to improve the capacitance of supercapacitor.
UR - http://www.scopus.com/inward/record.url?scp=85076193223&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85076193223&partnerID=8YFLogxK
U2 - 10.1007/s11664-019-07853-9
DO - 10.1007/s11664-019-07853-9
M3 - Article
AN - SCOPUS:85076193223
SN - 0361-5235
JO - Journal of Electronic Materials
JF - Journal of Electronic Materials
ER -