Synthesis and detailed characterization of sustainable starch-based bioplastic

Ishita Chakraborty, N. Pooja, Soumyabrata Banik, Indira Govindaraju, Kuheli Das, Sib Sankar Mal, Guan Yu Zhuo, Muzamil Ahmad Rather, Manabendra Mandal, Ashamoni Neog, Rajib Biswas, Vishwanath Managuli, Amitabha Datta, Krishna Kishore Mahato, Nirmal Mazumder

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


There is an urgent requirement of replacing the environmentally hazardous petroleum-based plastics with sustainable and efficient starch-based bioplastics. Development and detailed characterization of the biodegradable bioplastics from plant-based polysaccharides such as starch is essential to reduce plastic pollution in the environment. In this research, bioplastics were developed from an equivalent blend of starch from two different sources namely rice and potato (1:1, w/w), crosslinked with different concentrations of citric acid (CA). The effect of CA cross-linking of starch-based bioplastics was investigated on its physicochemical and functional properties. The X-ray diffraction (XRD) spectra revealed that the synthesized bioplastics were amorphous in nature with broad diffraction peaks. Further, the peak at 1716 cm−1 in Fourier transform infrared (FTIR) spectra indicated the formation of ester bonds in CA cross-linked bioplastics. Atomic force microscopy (AFM) revealed the surface roughness of the bioplastics decreased with increasing concentration of CA. Mechanical and thermal properties of bioplastics were characterized using universal testing machine, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA), respectively.

Original languageEnglish
Article numbere52924
JournalJournal of Applied Polymer Science
Issue number39
Publication statusPublished - 15-10-2022

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Surfaces, Coatings and Films
  • Polymers and Plastics
  • Materials Chemistry


Dive into the research topics of 'Synthesis and detailed characterization of sustainable starch-based bioplastic'. Together they form a unique fingerprint.

Cite this