Synthesis, biological evaluation, and in silico studies of indole-tethered pyrazoline derivatives as anticancer agents targeting topoisomerase IIα

Kashif Haider, Shivani Sharma, Yuba Raj Pokharel, Subham Das, Alex Joseph, Abul Kalam Najmi, Faiz Ahmad, Mohammad Shahar Yar

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

We herein report a new series of indole-tethered pyrazoline derivatives as potent anticancer agents. A total of 12 compounds were designed and synthesized by conventional as well as microwave-irradiated synthesis methods. The latter method results in a significant reduction in the duration of reaction along with improved yields. All synthesized derivatives (7a−7l) were evaluated for their cytotoxic activity against A431, HeLa, and MDAMB-231 cell lines. Compounds 7a and 7b were found most potent in the series and demonstrated an IC50 value of 3.17 and 5.16 µM against the A431 cell line, respectively, compared to the standard drug doxorubicin. Compounds 7a and 7b significantly suppress colony formation, migration, and S phase cell cycle arrest of A431 cells. Furthermore, compound 7a regulated the expression of apoptotic proteins causing the downregulation of procaspase 3/9, antiapoptotic protein Bcl-xL, and upregulation of proapoptotic protein Bax in a dose-dependent manner. Topoisomerase enzyme inhibition assay confirmed that compounds 7a and 7b can significantly inhibit topoisomerase IIα. In vivo oral acute toxicity of compounds 7a and 7b revealed that both compounds are safe compared to doxorubicin; cardiomyopathy studies showed normal architecture of cardiomyocytes and myofibrils. In addition, molecular docking studies revealed the possible interaction of compounds 7a and 7b within the active binding site of the topoisomerase enzyme. The 100 ns molecular dynamic simulation of compounds 7a and 7b proved that both compounds validate all screening parameters.

Original languageEnglish
Pages (from-to)1555-1577
Number of pages23
JournalDrug Development Research
Volume83
Issue number7
DOIs
Publication statusPublished - 11-2022

All Science Journal Classification (ASJC) codes

  • Drug Discovery

Fingerprint

Dive into the research topics of 'Synthesis, biological evaluation, and in silico studies of indole-tethered pyrazoline derivatives as anticancer agents targeting topoisomerase IIα'. Together they form a unique fingerprint.

Cite this