TY - JOUR
T1 - Synthesis, docking and anti-tumor activity of β-L-1,3-thiazolidine pyrimidine nucleoside analogues
AU - Sriharsha, S.N.
AU - Ranganath Pai, K.S.
AU - [Unknown], Suhas
AU - Shashikanth, S.
AU - Chandra, N.
AU - Prabhu, K.R.
N1 - Cited By :2
Export Date: 10 November 2017
Correspondence Address: Shashikanth, S.; Department of Studies in Chemistry, University of Mysore, Manasagangothri, Mysore 570 006, India; email: [email protected]
Chemicals/CAS: cisplatin, 15663-27-1, 26035-31-4, 96081-74-2; stannic chloride, 7646-78-8; thymidylate synthase, 9031-61-2; trifluoromethanesulfonic acid, 1493-13-6; Antineoplastic Agents; Pyrimidine Nucleosides; Thiazolidines
References: Cassillas, T., Delicado, E.G., Carmona, F.G., Portugal, M.T.M., (1993) Biochemistry, 32, p. 14203; Verri, A., Montecucco, A., Gosselin, G., Imbach, J.L., Spadari, S., (1999) Biochem. J, 337, p. 585; Gati, W.P., Dagnino, E.J., Patterson, A.R.P., (1989) Biochem. J, 263, p. 957; Heidelberger, C., Chaudhuri, N.K., Danenberg, P., Mooren, D., Griesbach, L., Duschinsky, R., Schnitzer, R.J., Schreiner, J., (1957) Nature, 179, p. 663; Grem, J., (2000) Invest. New Drugs, 18, p. 299; Longley, D.B., Harkin, D.P., Johnston, P.G., (2003) Nat. Cancer, 3, p. 330; Carreras, C.W., Santi, D.V., (1995) Annu. Rev. Biochem, 64, p. 721; Hatse, S., De Clercq, E., Balzarini, J., (1999) Biochem. Pharm, 58, p. 539; Van Triest, B., Pinedo, H.M., Giaccone, G., Peters, G.J., (2000) Ann. Oncol, 11, p. 385; Costi, M.P., Tondi, D., Rinaldi, M., Barlocco, D., Pecorari, P., Soragni, F., Venturelli, A., Stroud, R.M., (2002) Biochim. Biophys. Acta, 1587, p. 206; Peterson, M.L., Vince, R., (1991) J. Med. Chem, 37, p. 2787; Lesyk, B.S., Zimenkovsky, R.V., Kutsyk, D.V., Atamanyuk, G.M., (2003) Semenciv Farmacevtychnyj zhurnal, 2, p. 52; Vorbrüggen, H., Hoefle, G., (1981) Chem. Ber, 114, p. 1256; Basel, Y., Hassner, A., (2000) J. Org. Chem, 65, p. 6368; Brown, H.C., Kim, S.C., Krishnamurthy, S., (1980) J. Org. Chem, 45, p. 1; Chong, Y., Chou, H., Choi, H., Schinazi, R., Chu, C., (2002) J. Med. Chem, 45, p. 4888; Ng, K., Orgel, L.E., (1989) J. Med. Chem, 32, p. 1754; Woo-Baeg, C.; Lawrence, J.; Wilson, Suresh, Y.; Dennis, C.L. J. Am. Chem. Soc., 1991, 113, 9377; Barral, K., Balzarini, J., Neyts, J., Clercq, E.D., Robert, C.H., Michel, C., (2006) J. Med. Chem, 49, p. 43; Morris, G.M., Goodsell, D.S., Halliday, R.S., (1998) J. Comput. Chem, 19, p. 1639; Uma Devi, P.R., Solomon, F.E., (1998) Ind. J. Exp. Biol, 36, p. 891; Kuttan, P., Bhanumathi, K., Nirmala, M.C.G., (1985) Cancer Lett, 29, p. 2; Echardt, A.E., Malone, B.N., Goldstein, I., (1982) Cancer Res, 42, p. 2977; Clarkson, B.D., Burchenal, J.H., (1965) Prog. Clin. Cancer, 1, p. 625; Orberlling, C., Guerin, M., (1954) Adv. Cancer Res, 2, p. 353; Ghosh, M.N., (1984) Fundamentals of experimental Pharmacology, p. 153. , 2nd Edition; Umadevi, P., Emerson, S.F., Sharada, A:C (1994) Indian J. Exp. Biol, 32, p. 523; Rusia, U., Swarup, K.S., (1988) Routine hematological tests- in Medical Laboratory Technology, p. 228. , Mukherjee K. L, ed, New Delhi, Tata Mcgraw-Hill Pub. Com. Ltd
PY - 2007
Y1 - 2007
N2 - In the search for effective, selective, and nontoxic antiviral and antitumor agents, a variety of strategies have been devised to design nucleoside analogues. Here we, have described the versatile synthesis of β-L-1,3-thiazolidine nucleoside analogues. These analogues are all derived from the key stereochemically defined intermediate N-tert-butoxy-carbonyl-4-hydroxymethyl-1,3-thiazolidine-2-ol which was accessible in 57% yield starting from L-Cysteine methylester hydrochloride. N-tert-butoxycarbonyl-2-acyloxy-4-trityloxymethyl-1,3-thiazolidine was coupled with the pyrimidine bases in the presence of Lewis acids stannic chloride or trimethyl silyl triflate following Vorbruggen procedure. Proof of the structure and configuration was obtained through 1H NMR, 13C NMR, Mass, elemental analysis and NOE experiments. Docking and antitumor activity of these nucleoside analogues are also reported. © 2007 Bentham Science Publishers Ltd.
AB - In the search for effective, selective, and nontoxic antiviral and antitumor agents, a variety of strategies have been devised to design nucleoside analogues. Here we, have described the versatile synthesis of β-L-1,3-thiazolidine nucleoside analogues. These analogues are all derived from the key stereochemically defined intermediate N-tert-butoxy-carbonyl-4-hydroxymethyl-1,3-thiazolidine-2-ol which was accessible in 57% yield starting from L-Cysteine methylester hydrochloride. N-tert-butoxycarbonyl-2-acyloxy-4-trityloxymethyl-1,3-thiazolidine was coupled with the pyrimidine bases in the presence of Lewis acids stannic chloride or trimethyl silyl triflate following Vorbruggen procedure. Proof of the structure and configuration was obtained through 1H NMR, 13C NMR, Mass, elemental analysis and NOE experiments. Docking and antitumor activity of these nucleoside analogues are also reported. © 2007 Bentham Science Publishers Ltd.
U2 - 10.2174/157340607781745500
DO - 10.2174/157340607781745500
M3 - Article
SN - 1573-4064
VL - 3
SP - 425
EP - 432
JO - Medicinal Chemistry
JF - Medicinal Chemistry
IS - 5
ER -