Abstract
The battery thermal management system (BTMS) plays a key role in keeping the electric vehicle battery temperature within thermal safety limits. A poorly designed BTMS may reduce the operational life of the battery. The present work aims to maintain the battery temperature below the threshold limit using the triangular and elliptical-shaped novel fins and the phase change material (PCM). Multiple arrays of these fins were fitted along the cell height in the annulus space between the cell sleeve and the casing such that the tip of the fins touches the casing. The individual and the combined performance of the fins and the PCM was assessed through temperature measurements using the thermocouples and the thermal camera at various power inputs of 30, 50 and 70 W. At 70 W, the cell operation was extended by a maximum of 250 %, 270 % and 280 % for the cell with PCM, with PCM and triangular fins and PCM with elliptical fins, respectively. The lowest extension in cell operation by 10 % was observed for the triangular fins alone at 70 W. This demonstrates the significant influence of the PCM on the cell performance. The temperature contours using the thermal camera showed that for all power settings, the peak temperature occurs at the cell center. The present studies demonstrate a significant potential for BTMS application in the combined system of elliptical fins with PCM.
Original language | English |
---|---|
Pages (from-to) | 535-544 |
Number of pages | 10 |
Journal | Process Safety and Environmental Protection |
Volume | 190 |
DOIs | |
Publication status | Published - 10-2024 |
All Science Journal Classification (ASJC) codes
- Environmental Engineering
- Environmental Chemistry
- General Chemical Engineering
- Safety, Risk, Reliability and Quality