Thermomechanical properties of carbon fabric reinforced epoxy laminates with h-BN and MoS2fillers

Yermal Shriraj Rao, Basavannadevaru Shivamurthy, Nagaraja Shetty, Nanjangud Subbarao Mohan

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


This work endeavors to investigate thermomechanical performance of carbon fabric reinforced epoxy composite (CEC) with fillers - hexagonal boron nitride (h-BN) and molybdenum disulfide (MoS2). The filler of 2, 4, 6, and 8 Wt.% was dispersed precisely in the epoxy resin through magnetic stirring and ultrasonication, prepared the filler loaded CEC using vacuum bag technique and studied the composite behavior at an elevated temperature by dynamic mechanical analysis. The 6 Wt.% MoS2-CEC showed 70% enhancement of storage modulus since the filler in the epoxy networks increased the composite stiffness. The increase in G-band intensity of Raman spectra in the filler loaded composites confirmed the improved matrix-fiber stress transfer. The 4 Wt.% BN-CEC revealed the highest glass-transition temperature 92°C. The thermogravimetric analysis of the composite exhibited a two-step thermal decomposition: epoxy matrix (nearby 260°C) and carbon fibers (beyond 420°C). The 4 Wt.% MoS2-CEC showed the maximum degree of crosslinking, twice the neat CEC, the MoS2restrained the mobility of the epoxy chains and decreased the thermal decomposition. Both the filler loaded composites have comparable thermal stability and are significantly improved than the neat CEC. Thus, the composite containing solid lubricant filler up to 6 Wt.% shall be used for high-temperature applications.

Original languageEnglish
Article numbere20210215
JournalMaterials Research
Issue number6
Publication statusPublished - 2021

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Thermomechanical properties of carbon fabric reinforced epoxy laminates with h-BN and MoS2fillers'. Together they form a unique fingerprint.

Cite this