TY - JOUR
T1 - Utility of adding Radiomics to clinical features in predicting the outcomes of radiotherapy for head and neck cancer using machine learning
AU - Gangil, Tarun
AU - Sharan, Krishna
AU - Rao, B. Dinesh
AU - Palanisamy, Krishnamoorthy
AU - Chakrabarti, Biswaroop
AU - Kadavigere, Rajagopal
N1 - Funding Information:
Acknowledgments The authors would like to acknowledge Mr. Manjunatha Maiya, Project Manager, Philips Research India, Bangalore, Karnataka, Mr. Prasad R V, Program Manager Philips Research India, Bangalore, Karnataka, and Mr. Shrinidhi G. C., Chief Physicist, Dept. of Radiotherapy, KMC, Manipal for their help and support in the conduct of this research.
Publisher Copyright:
© 2022 Public Library of Science. All rights reserved.
PY - 2022/12
Y1 - 2022/12
N2 - Background Radiomics involves the extraction of quantitative information from annotated Computed-Tomography (CT) images, and has been used to predict outcomes in Head and Neck Squamous Cell Carcinoma (HNSCC). Subjecting combined Radiomics and Clinical features to Machine Learning (ML) could offer better predictions of clinical outcomes. This study is a comparative performance analysis of ML models with Clinical, Radiomics, and Clinico-Radiomic datasets for predicting four outcomes of HNSCC treated with Curative Radiation Therapy (RT): Distant Metastases, Locoregional Recurrence, New Primary, and Residual Disease. Methodology The study used retrospective data of 311 HNSCC patients treated with radiotherapy between 2013–2018 at our centre. Binary prediction models were developed for the four outcomes with Clinical-only, Clinico-Radiomic, and Radiomics-only datasets, using three different ML classification algorithms namely, Random Forest (RF), Kernel Support Vector Machine (KSVM), and XGBoost. The best-performing ML algorithms of the three dataset groups was then compared. Results The Clinico-Radiomic dataset using KSVM classifier provided the best prediction. Predicted mean testing accuracy for Distant Metastases, Locoregional Recurrence, New Primary, and Residual Disease was 97%, 72%, 99%, and 96%, respectively. The mean area under the receiver operating curve (AUC) was calculated and displayed for all the models using three dataset groups. Conclusion Clinico-Radiomic dataset improved the predictive ability of ML models over clinical features alone, while models built using Radiomics performed poorly. Radiomics data could therefore effectively supplement clinical data in predicting outcomes.
AB - Background Radiomics involves the extraction of quantitative information from annotated Computed-Tomography (CT) images, and has been used to predict outcomes in Head and Neck Squamous Cell Carcinoma (HNSCC). Subjecting combined Radiomics and Clinical features to Machine Learning (ML) could offer better predictions of clinical outcomes. This study is a comparative performance analysis of ML models with Clinical, Radiomics, and Clinico-Radiomic datasets for predicting four outcomes of HNSCC treated with Curative Radiation Therapy (RT): Distant Metastases, Locoregional Recurrence, New Primary, and Residual Disease. Methodology The study used retrospective data of 311 HNSCC patients treated with radiotherapy between 2013–2018 at our centre. Binary prediction models were developed for the four outcomes with Clinical-only, Clinico-Radiomic, and Radiomics-only datasets, using three different ML classification algorithms namely, Random Forest (RF), Kernel Support Vector Machine (KSVM), and XGBoost. The best-performing ML algorithms of the three dataset groups was then compared. Results The Clinico-Radiomic dataset using KSVM classifier provided the best prediction. Predicted mean testing accuracy for Distant Metastases, Locoregional Recurrence, New Primary, and Residual Disease was 97%, 72%, 99%, and 96%, respectively. The mean area under the receiver operating curve (AUC) was calculated and displayed for all the models using three dataset groups. Conclusion Clinico-Radiomic dataset improved the predictive ability of ML models over clinical features alone, while models built using Radiomics performed poorly. Radiomics data could therefore effectively supplement clinical data in predicting outcomes.
UR - http://www.scopus.com/inward/record.url?scp=85144137998&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85144137998&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0277168
DO - 10.1371/journal.pone.0277168
M3 - Article
C2 - 36520945
AN - SCOPUS:85144137998
SN - 1932-6203
VL - 17
JO - PLoS One
JF - PLoS One
IS - 12 December
M1 - e0277168
ER -