WeakSegNet: Combining Unsupervised, Few-Shot and Weakly Supervised Methods for the Semantic Segmentation of Low-Magnification Effusion Cytology Images

Shajahan Aboobacker, Deepu Vijayasenan*, S. Sumam David*, Pooja K. Suresh, Saraswathy Sreeram

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Effusion cytology analysis can be time consuming for cytopathologists, but the burden can be reduced through automatic malignancy detection. The main challenge in the automation process is pixel-wise labeling. We proposed WeakSegNet, a new model that addresses the challenge of semantic segmentation in low-magnification images by utilizing only four images with pixel-wise labels. WeakSegNet combines unsupervised, few-shot, and weakly supervised learning methods. In the first stage, an unsupervised model, DeepClusterSeg, learns the homogeneous structures from different images. The few-shot method uses only four images with pixel-wise labels to map homogeneous structures to the required classes. The final stage utilized image-level labels to predict precise classes using weakly supervised learning. We conducted our experiments using a dataset from KMC Hospital, MAHE, which consisted of 345 images. We performed 5-fold cross-validation to evaluate the results. Our proposed model achieved promising results, with an F-score of 0.85 and an IoU of 0.81 for the malignant class, surpassing the performance of the standard k-means algorithm with weakly supervised learning (F-scores of 0.65 and an IoU of 0.61). The semantic segmentation of low-magnification images using our approach eliminated 47% of the sub-regions that need to be scanned at high magnification. This innovative approach reduces the workload of cytopathologists and maintains a high accuracy in effusion cytology malignancy detection.

Original languageEnglish
Pages (from-to)144467-144478
Number of pages12
JournalIEEE Access
Volume13
DOIs
Publication statusPublished - 2025

All Science Journal Classification (ASJC) codes

  • General Computer Science
  • General Materials Science
  • General Engineering

Fingerprint

Dive into the research topics of 'WeakSegNet: Combining Unsupervised, Few-Shot and Weakly Supervised Methods for the Semantic Segmentation of Low-Magnification Effusion Cytology Images'. Together they form a unique fingerprint.

Cite this